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1. Introduction. Creep is a special  case of plastic deformation in which the external  load is kept constant through- 
out the test. The loading process itself~is accompanied by elast ic  and "instantaneous" plastic deformation. This is fol- 
lowed by the "primary" stage of creep. In this stage the rate of plastic deformation usually decreases (curve a in Fig. 1), 
a l though in some cases (in re la t ively  undislocated crystals of silicon and germanium, in polycrystal l ine iron with dislo- 
cations blocked by carbon, in brasses, and other mater ials)  an incubation period is observed (curve b in Fig. 1). During 
the "secondary" stage (steady-state creep) the creep rate is almost constant. The third "tertiary" stage is usually charac-  

ter ized by an increase in creep rate and ends in fracture. 

Like any form of plastic deformation of crystal l ine mater ia l ,  the a tomic  mechanism of creep consists in the motion 
of various l a t t i ce  defects: point defects (vacancies, interst i t ial  atoms, impurity atoms), l inear defects (dislocations), 
and surface defects (block boundaries, twinning). 

In what follows we describe the present state of physfcal research (mainly in relat ion to pure metals)  into the mech-  
anisms controlling the creep rate under various conditions and the nature of the structural changes taking place during 
creep. Unfortunately. the results obtained so far a r e  too few for a complete  physical  theory of creep to be constructed. 
However. it is a lready possible to discuss cer tain of its aspects. 

2. Motion of point defects (diffusion creep), Migration of point defects occurs in 
the presence of a chemica l  potent ial  gradient: 

Fig. 1. 
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where c is the loca l  concentrat ion of defects, c o their equi l ibr ium concentrat ion at  t em-  
perature T, k the Boltzmann constant, p the pressure, and ~ the a tomic  volume. The 
mass transfer that determines the plastic deformation is described by he diffusion equa- 

tion: 

pf~ 
Oc D V ~ ( c  + co .~_~ ) (2.2) 
Ot - -  

where D is the diffusion coeff icient  of the defects. Of course, the case of vacancies mass transfer (migration of atoms) 

takes place  in a direction opposite to that  in which the vacancies move (Fig, 2), 

Diffusion plast ici ty can occur both in a nonhomogeneous stress field with grad p ~ 0 
(upward diffusion [1]) and in a homogeneous stress fieId. In the la t ter  case the defect  concen-  
trat ion gradient is ensured by the boundary conditions: difference in chemica l  potent ial  at 

different points on the surface of the crystal,  or grain in the case of a polycrystal.  The stress 

normal to the surface of the body 

fin ~--- ~tknink 

(n - normal to surface, recurring indices imply summation)  changes the chemica l  potent ia l  

by an amount: 

corresponding to the supersaturation: 

A~ : ~n~ (2. 8) 

l d 

@ 
Fig. 2. 
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For a spherical  grain of radius R the creep rate is [2, 3]: 

( S t i -  Kronecker delta).  

(2. 4) 
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Taking into account the relaxation of shear stresses in the polycrystal due to the reduced viscosity of the boundary 
layers introduces a slight change in the numerical  coefficient  of (2.4). 

Recently, Lifschitz [4] gave a complete  solution of the self-consistent problem of diffusion creep in polycrystals 

which takes into account the internal stresses due to nonconformity of deformation of adjacent  grains. For the effect ive 
viscosity, in place of the quantity 7? inEq. (2. 4), Lifschitz obtained an expression of the type ~~ + N*, where il ~ is deter -  
mined by the dependence of the bulk viscosity on the shape of the grain, while 7t* describes the viscous slip along the 
grain boundaries. If the la t ter  are sufficiently distorted, the viscosity tensor 

~litam~_.~l~kzm=4-~-~-~2V xi~ k OxzOSm [ x - - ~ l - ~ d x d g ,  (2. 5) 
V V  

where V is the grain volume. With very fine grains the role of surface diffusion along the grain boundaries becomes more 
important, If the ratio of the coefficients of surface to volume self-diffusion Ds/D is much greater than the ratio of the 
grain size to the interatomic distance L/ct,  then the effect ive viscosity 

D L  
n = r~ ~ (2.6) 

D s a  

It is assumed that diffusion creep determines the behavior of f ine-grained materials  at very high temperatures [5]. 
The creep of polycrystal l ine aluminum oxide in the temperature range 1400-t900~ [6, 7] may be quoted as an example;  
here the relat ion g ~ o D / R  2, character is t ic  of diffusion creep, is quite distinctly observed, and the effect ive viscosity 
corresponds to the diffusion coefficient  for a luminum ions, exceeding by several orders that  for oxygen ions. It is possi- 
ble that the diffusion mechanism of deformation was observed in tensile tests on thin iron wires at temperatures exceed-  
ing 1350~ [~]. In these tests grooves, nearly normal to the axis, were formed in the boundary region, and the elongation 
was l inked with the volume of meta l  expel led  from these grooves. 

3. Conservative motion (slip) of dislocations. Metaltographic investigations show that creep is usually accompanied 
by the formation of slip lines on the surface. In a luminum single crystals creep due to dislocation slip, in a few clear ly  
visible bands has been observed even at temperatures just below the mel t ing point [9]. When a dislocation moves, the 
rate of plastic deformation is described by an equation of the type (for details see [10])- 

--. N v b  , (3.1) 

where N is the density of the dislocations, v is their rate of motion, and b is the Burgers vector. The creep curves for 
germanium can be satisfactorily described by Eq. (3.1) if we introduce relations N(s) and v(o, T) determined from mi-  
croscopic observations of dislocations [11]. 

Presumably, at sufficiently low stresses the mobil i ty of the dislocations is determined by the la t t i ce  friction, i . e . .  

by forces of the Peierls-Nabarro type (see [12], p. 104), which must be overcome when a dislocation l ine moves in the 
slip plane from one position to another with minimu m expenditure of energy. The linear sections of a dislocation, lying 
in favorable directions (in the case of the fcc l a t t i ce  these are the directions of close packing <110>), are connected by 

kinks. The tangent ia l  d isplacement  of kinks under the influence of stress acting at a rate v k causes the translat ional  
movement  of the dislocations at a rate:  

v ----- n b v  k , 

where n is the l inear  density of the kinks. The equi l ibr ium density of  the kinks is [13]: 

where w0 is the kink energy, 
constant. According to [1@ 

(3.2) 

(2s~pwokI) !/' - -  wo 
n - -  h E  % exp k T  ' (3.3) 

p the density of the mater ia l ,  E the energy of the dislocation per unit length, and h Planck's 

C~ba (3.4) 

where C is the speed of sound. Consequently, according to (3 .1)- (3 .3) ,  in the ext reme case of low stresses dislocation 
slip leads to a l inear  relat ion between creep ra te  and stress: 

N (2npw0) l/I C b  5 - -  w o  

= h ( E k T )  1/' ~ exp k R  (3.5) 
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Evidently, la t t ice  friction controls the creep of covalent  crystals [diamond, si l icon ([12], p. 505)], and the hexag-  
onal metals zinc (see [15]) and magnesium [16] in the case of slip in non-basal  systems. Owing to the high Peierls stresses 
these systems become act ive only at high temperatures.  

The motion of dislocations may be resisted not only by interact ion with the la t t i ce  but also by interaction with oth-  
er dislocations and other crystal defects. For example ,  in the case of the intersection of mutually at tract ing dislocations 
the dislocation reactions take place with the formation of a resultant disiocation favorable with respect to energy, i . e . ,  
AB in Fig. 3, which illustrates the interaction between a moving dislocation with Burgers vector h 1 and counter -d is Ioca-  

tions; the arrows indicate the direction of the dislocation lines; b 1 + b z + b a = 0. 
If the dislocation is to advance further, the segment AB must be shortened and the 
corresponding barrier potential  overcome [17]. When mutually repel l ing dis loca-  
tions intersect, no reactions take place between them. The moving dislocation 
may be forced through the wall  of the sessile dislocations. In this case the barrier 
potential  U and its dependence on o are determined by the geometry of the prob- 
lem. If, instead of making an exact  calculat ion of the elast ic  fields, we simply 
compute the energy pe r unit length (linear tension) of the dislocations, then, in 
states of stable and unstable equil ibrium, the segment punched through is an arc 
of radius R = 0 .5Gb/o  ([18], p. 70). 

~ / ' " A  i / 

Fig. 3. 

The barrier potential  is overcome, without activation, at the critical stress 

~ = G b / l ,  (3.6) 

where l is the distance between the wall dislocations. 

The slip of screw dislocations in a face-centered  l a t t i ce  is crysta l lographical ly  possible along two planes of the 
type {111} passing through the dislocation l ine.  Therefore a screw dislocation, blocked by some obstacle (parallel  dis- 
location,  separated particle),  can continue its motion by crossing to another plane (cross slip). A favorable dislocation 
configuration in the face-cen te red  la t t ice ,  from the energy point of  view, is a stacking fault in the slip piane {111} 
bounded by part ial  dislocations (for details see [19], p. 183, and [20]). For a dislocation line to cross from the ini t ia l  
slip plane into a cross-slip plane it is necessary to compress the stacking fault over a cer tain length at the expense of 
thermal  fluctuation. The compressed section of the dislocation then breaks down into par t ia l  dislocations but in a dif- 
ferent slip plane; for example,  Fig. 4 shows schemat ica l ly  the cross slip of a screw dislocation from the ini t ia l  plane 

(1) into plane (2). An a t tempt  to compute the act ivat ion energy of this process theore t ica l ly  has been made by Shoeck 

and Seeger [21] and Friedel [22]. 

If a split  screw dislocation has a jog, cross slip will  be much easier. The 

jog in a screw dislocation is dissociated in such a way that  one of its part ial  
dislocations a l ready lies in the cross-slip plane (for details  see [23]). 

m y b  u m d h  o c 

in polycrystal l ine a luminum at 275-3~0~ (act ivat ion energy 28 000 c a l / m o l e )  
[24] and in single crystals of a luminum in pure shear at 600-750~ [25]. 

, 4. Non-conservative motion (cl imb) of dislocations. In contrast to the 
Fig. 4. conservative motion (slip) considered above, non-conservat ive motion is char-  

ac te r ized  by the growth or shortening of incomple te  a tomic  planes requiring 
mass transfer - diffusion of vacancies or interst i t ial  atoms. As a result, the whole dislocation, or parts of it (down to 

a tomic  jogs), "climbs," i. e , ,  moves at an,angle to the slip plane. 

jogs in dislocations are produced both by intersection with other dislocations whose Burgers vectors do not l i e  in the 
same slip plane ([18], p. 200) and by the motion of kinks of different types along a screw dislocation [26]. 

The ac t iva t ion  energy of jog formation on intersection of dislocations depends on the type of jog and the degree of 
spli t t ing of the dislocations; i t  is given by U = aGb 3, where a may vary from 0 .2  to I ([18], p. 201). According to Seeger 
([19], p. 211), the ac t iva t ion  volume 7 is then equal to bdl, where l is the distance between the dislocations of  the "for- 

est," and d is the width of the split  dislocation. The creep rate  is 

i U - -  ~ (z - -  zd ] =vobFQ exp - -  kT J '  (4. I) 

where v 0 is the frequency of the thermal  vibrations of the atoms (of the order of 1012 see ' l ) ,  Q is the bulk density of the 

segments of  the dislocations b locked by obstacles, F is the area covered by these segments after overcoming the obstacle,  

and o i is the ampl i tude  of  the internal  stress field blocking the motion of the dislocations. Assuming that  the internal  

stress is proportional to the strain (of= 0e) and that the coeff ic ient  of the exponent in (4. 1) remains  constant, after in te -  
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grating we get the logari thmic relation, frequently observed experimental ly ,  

e ----- A In  (vt + t )  

A -= -~, ~ ==- -7-( vobFQ exp . 177' ' 

Agreement  with the exper imental  data is obtained if T ~ 10-19 cm3' ,which corresponds to the observed values of I. 

The creep will  be steady if al l  the quantities entering into (4. 1) remain constant, log s' [sec - i ]  
A dependence of the s teady-s ta te  creep rate on stress and temperature of type (4, 1) has 4 r  
been observed exper imenta l ly  by Zhurkov [27, 28] for various mater ia ls  at temperatures / .  
below 0.5 T. (melting point) and not too low stresses. For example ,  Fig. 5 [27] gives 0 / 
creep rate versus stress for polycrystal l ine aluminum: 1 - 100~ 2 - 200~ 3 - 300~ -4 ill/Z7 / / - -  
4 - 400~ 5 - 500~ For uniaxial  tension, the act ivat ion energy U is of the same order I 
as the sublimation energy (about 8 .6  Gb 3 for face-centered  metals).  Unfortunately, the -8 1 
a tomic  mechanism that l imits  the creep rate has not been determined either by Zhurkov 1 Z 3 4 
nor by many other workers. However, according to Myshlyaev's electron microscope data o, kg/mm 2 
[29], l is actual ly  close to the distance between the dislocations at subboundaries" l 
equals 140 A for ? = 3.86 (kcal /mole)(mm2/kg) .  Fig. ,5. 

A relat ion of type (4. 1) is retained for torsion [30, 31], but in this case the act ivat ion energy is much smaller  than 
the energy of sublimation (and even smaller  than the energy of self-diffusion). The dependence of the creep rate on the 

type of stress state was also noted in [32]: the creep rate was 2-3 t imes greater in compression than in tension. 

When the stress state changes so does the relat ion between the act ivi ty  of the 
various slip systems and, consequently, we get a different dislocation structure and, 
in particular,  a change in the proportion of jogs of various types. It is possible that 
this also explains the effect  of the type of stress state on the act ivat ion energy and 
creep rate. 

A number of authors bel ieve  that the creep rate is l imi ted  by the formation and 
subsequent motion of jogs resulting from the intersection of dislocations [33, 34]. 
These may migrate  along the dislocation l ine or cl imb,  leaving behind chains of va-  
cancies or interst i t ial  atoms (see Fig. 6). Correspondingly, if the direction of motion 
of the dislocation is fixed, we must distinguish jogs of the vacancy and interst i t ial  

Fig. G. types. Since the energy of formation of interst i t ial  atoms considerably exceeds the 
energy of formation of vacancies we may assume that interst i t ial  atoms will only be 

formed if  the motion of the dislocations is rapid. Otherwise the non-conservat ive motion of an interst i t ial  jog might be 
mainta ined by, absorption of vacancies reaching the jog from the interior of the crystal or along the dislocation. Accord-  
ing to Mott [33], the creep rate is l imi ted  by the non-conservat ive motion of vacancy jogs and is described by an equa- 
tion of type (4. 1), where U is t reated as the energy of  vacancy formation, and ? = b2g (l is the distance between jogs). 
If af ter  the formation of a vacancy the jog does not slip sideways, energy must be spent in removing the vacancy,  and the 
act ivat ion energy U will  then be composed of the energy of formation of the vacancy and its energy of migration,  i . e . ,  
it will be equal to the energy of self-diffusion U d. Fel tham [34] has examined in detai l  various mechanisms of jog mo-  
tion and has given the spectrum of the corresponding act ivat ion energies. 

The formation of vacancies in creep is supported by many indirect  data. However, it  should be pointed out that in 
plastic deformation in certain circumstances interst i t ia l  atoms rather than vacancies are chiefly formed [35]. 

The above discussion of the effect of the stress state on the type of  creep is fully appl icable  to the case of creep 
l imi ted  by the formation of point defects. 

If for some reason dislocation slip is suppressed, the main contribution to creep is made by cl imb.  In this case 
point defects may be exchanged both be tween dislocations and between dislocations and crystal (grain) boundaries. At 
the edges of extra planes the chemica l  potent ial  varies according to Eq. (2. 3), where n is the normal  m the extra plane. 
The motion of point defects toward the edge of the extra plane (or away from it) enables the dislocation to c l imb at the 
rate: 

2gD 6f~ 
vn-- b In (R/ro) kT ' (4. 3) 

where R is the distance between the source and "sink" of the defects, and r 0 is the radius of the dislocation loop. Substitu- 
tion of  (4. 3) in (3.1) gives the creep rate for a crystal with a dislocation density N: 
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2~Nz Df] 
- -  in (R / to) k T  (4. 4) 

Comparison of (4. 4) with (2.4) shows that even a few dislocations in the interior of a grain ensures a higher creep 
rate than the pure diffusion (without dislocations) mechanism considered in w 

To climb the dislocations must have jogs with which vacan-  
cies are associated. The activation energy for c l imb U c is equal 
to the activation energy' for self-diffusion U d only if the energy of 
jog formation Uj << U d or Uj >> U d (in the latter case the jogs can- 
not be produced by fluctuation processes, but only by the intersec- 
tion of dislocations, which sharply reduces the rate of climb). How- 

ever, if Uj and U d are commensurable, then U c > U d [20]. 

5. The general case of dislocation creep. In the general case 
the processes discussed above take place in a complex dislocation 

structure, the elements of which may change as a result of cl imb 

or slip. 

Numerous papers discuss the scheme of dislocation pile-ups 
suggested by Weertman [36]. If a stress o compresses n dislocations 
against an obstacle, the first dislocation will be acted upon by a 
stress no. The rate of cl imb of this first dislocation is given by Eq. 
(4. 2) with the external stress o replaced by the internal stress of the 

order of no. If the stress field produced by the obstacle is inversely 
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Fig. 7 

proportional to the distance, then to get past the obstacle the dislocation must cl imb a distance inversely proportional to 

no. Hence the creep rate is proportional to (no)2D/kT. 

If the dislocations in the pi le-up come from a region of the slip plane of length L, then n ~ 2aL/gb, and the creep 
rate is proportional to o4D/kT. Taking into account various geometrical  factors leads to an additional weak dependence 

of e' on o, and the final creep rate is 

- -  U d _ eonst z TM exp ( 3 < m < 4 . 5 ) .  (5.1) kT --'Z-~ 

At large no values allowance should be made for the reduction in activation energy due to the stress energy, so that in 

(5. i) 

rjrn/kT 

where A is a constant determined by the geometry of the problem. 

Analysis of the results of experiments on 15 pure metals, carried out at t em-  
peratures exceeding 0.5 T, [37], shows that in ln(g/D),  in(o/E) coordinates (Fig. 7) 
parallel straight lines with a slope m ~ 5 are obtained. The author believes this to 

be a confirmation of Eq. (5.1). Similar results were obtained by McLean [38] in 
tests on creep in a iron at 550 and 700~ (m = 5.4); in fact, he found that the dis- 
location density determined by direct electron microscopy increased only slightly 

with stress, so that the strong dependence of the creep rate on stress must have been 

due to the effect of the stresses on the average rate of motion of the dislocations. 

A similar investigation of the kinetics of high-temperature creep in a number 

of fcc metals (including single crystals) was carried out by Pines et al. [5, 9, 39]. 

At near -mel t ing  temperatures the relation between creep rate and stress is linear, as 

long as o does not exceed a certain crit ical  value. 

When o > o 0 

= ;1 -f- e, (el = Atz, e2 -~- A2 (a - -  zo) ra) 

must be replaced by am-2 sh A n o ~ / k T ,  

With increasing temperature, A 1 and m also increase, while o 0 decreases. The 

constant A1 depends strongly on the structure. When o < o o deformation is not accom- 

panied by visible traces of slip. When o > o0 the surface of the deformed single crys- 

tal displays a relat ively small  number of coarse slip bands. For a luminum the var ia-  

tion in a 0 with temperature was proportional to the shear modulus G, and the creep 

\ 

Fig. 8. 
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rates obtained at various temperatures and stresses fitted a universal curve of the type: 

.~- D/(~ / G). (5.2) 

::: ~ccordance with Sherby's results [37]. For nickel the ratio o0/G depended on T and the creep rates failed to satisfy 
Eq, (5.2). 

In [89] Pines and Sirenko examined the relat ion between o and T and the variation in g~ /AT for the case of a 
s teady-s ta te  creep. For copper at 600-1000~C the exper imental  data agreed with Eq. ({5. 1) for m varying from 1 to 4. 
~'ines also assumes that even in the range T < 0.5 T,  [4] taking into account the dependence of the coefficient  of the ex-  
ponent in (4. 1) on T and c~ can lead  to agreement  between the act ivat ion energy for creep and the energy of self-diffu-  
sion, 

More recently, the mechanism of h igh- tempera ture  creep in metals has been investigated by Utevskii  et al. [40, 
41], using the methods of transmission electron microscopy. They found that  the dislocation structure of nickel  and its 
alloys is character ized by a large number of three-dimensional ly  curved dislocations incapable of pure slip. The main 
forms of dislocations include helicoids due to the combining of point defects and screw dislocations (Fig. 8a) and further 
distorted by the applied stresses (Fig~ 8, b, c). 

Motion of the he l ico ida l  dislocation as a whole means that the extra planes must grow longer on one side of the 
turn and shorter on the other. This process can be effected by diffusion flow within the turns of the hel icoid.  The rate of 
motion of a dislocation under a stress o is ca lcula ted  by analogy with (4. 3) [40]: 

4:~D ~2 6 = in - -  (5.3) 
v - -  b6 k T '  " H  ro ]/-R "a-l- H a In Rro J " 

Here 5 is determined by the geometry of the he l ico id  (the radius of the turns R and the pitch H). 

Numerical  evaluations give a quanti tat ive agreement  between the theoret ica l  rate of motion of the he l ico ida l  dis- 
locations and the value es t imated from (3, 1) on the basis of exper imental  data on the creep rate. 

Judging from the results of [41], h igh- tempera ture  creep is mainly determined by the non-conservative motion of 
dislocations due to the diffusion displacement  of point defects over re la t ive ly  short distances. 

6. Importance of surface defects (block and grain boundaries). The joint movements of dislocations that form the 
boundaries of blocks also result in plastic deformation. For a crystal consisting of blocks of size L, misoriented on the 
average by an angle 0, the rate of deformation is 

- =  Ov~ (6. 1) 

(v ~ is the rate of motion of the boundaries). 

The integral  displacement  of sma l l - ang le  boundaries at increased temperatures has been observed in zinc [42]. Be- 
cause of the structure of the dislocation networks in crystals, their integral  motion due to an external  stress is such that 
some of their e lements  must cl imb.  The rate of displacement  of a mechanica l ly  stable network in an fcc l a t t i ce  con- 
trol led by the c l imb has been ca lcu la ted  in [48]~ 

A more important factor in the mechanism of creep is the passive role played by the inter-block boundaries. In the 

case of diffusion creep, this reduces to the absorption and release of vacancies (with simultaneous climb of the disloca- 

tions) [4], while in the case of dislocation creep the same boundaries have a hardening effect. 

The primary stage of creep usually establishes a certain equilibrium block structure, The average misorientation 

and the dimensions of the blocks depend on the initial structure of the material (degree of work-hardening, grain size). 

Other things being equal, the blocks wilI be larger, the higher the temperature and lower the stresses. According to 

several  authors the block structure does not undergo any marked changes during secondary creep [28, 29]. Direct e lec t ron-  
microscope investigations of the dislocation structure of various metals during creep are described in papers [29, 88, 41]. 

In nickel  at 500~ [41] and in a luminum at room temperature  [29] subboundaries are formed. These are more regular 
than those obtained after cold working, but iess perfect than the boundaries obtained after polyganizat ion.  For example .  

Fig. 9 [29] shows the walls of dislocations associated with creep in a luminum (experimental  temperature  20~ magnif i -  

cation 53 000). The structure of c~-iron also shows subboundaries formed during creep [38], The role played by grain 
boundaries in diffusion creep was considered in w When creep is caused by the motion of dislocations in the interior 

of the grains, the boundaries represent an obstacle.  In order to ensure compat ib i l i ty  of deformation in adjacent  grains it is 
necessary for slip to take place in several  systems, at least in the boundary region of one ef  the grains. 

At low temperatures,  mul t ip le  slip is made difficult; therefore the boundaries harden the mater ia l ,  and a decrease 
in grain size reduces the creep rate.  At high temperatures thermal  act ivat ion faci l i ta tes  the mutual  intersection of dislo- 

cations in mul t ip le  slip. A lowering of the ac t iva t ion  barriers for diffusion, indicated by an increase in the rate  of diffu- 
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sion in the boundary zone, also causes the dislocations to climb. As a result, at elevated temperatures multiple slip is 
facilitated, and the creep rate rises. This is in agreement with the results of an experimental investigation into the ef- 
fect of the orientation of aluminum single crystals on  creep [44, 45]. The simultaneous deformation of the near-boundary 
regions in several slip ~ystems increases the creep rate,  the more sharply the finer the grain. Nonuniform plastic deforma- 
tion in the near-boundary regions of adjacent grains results in the formation of macroscopic jogs, which have a nonuni- 
form rate of growth along the boundary and may vary considerably with time [46]. 

Fig. 9. 

7. Creep and fracture. The creep process is usually accompanied by the initiation and growth of cracks and micro- 
pores (e. g., [47]), which raises the question of the effect of local failure on the creep rate. According to Zhurkov [27], 
the effect of the fracture rate on the creep rate follows from the coincidence of the parameters describing the dependence 
of life and creep rate on stress and temperature. Orlov [48] assumes that the development of mierocracks can facilitate 
the passage of pIastic deformation owing to the flow of dislocations into the crack. 

According to other authors, the creep rate determines the fracture rate rather than vice versa. The creep process 
merely prepares the material for failure as a result of the accumulation of certain irreversible changes. For example, the 
vacancies produced in plastic deformation coagulate into pores along the grain boundaries and the growth of these pores 
eventually causes fracture [49]. The subordinate part played by fracture in secondary creep is also indicated by the fact 
that the creep rate in the tertiary stage is determined by the normal stresses and in the secondary stage by the shear 

stresses [50]. 
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